1-Potential Energy Surfaces (PESs) :

- For this work we use the Jacobi coordinates presented in FIG. 1.
- Table 1 shows that the computational time (CPU) and the disk usage for a single point calculation is reduced by a factor ~ 70 for CCSD(T)-F12/aug-cC-pVTZ relative to CCSD(T)/CBS.
-The ab-initio PESs presented in FIG. 2 are calculated for HCI-He system in the supermolecular approach using the CCSD(T)F12 method with aug-cc-pVTZ basis set for panel (a) and using the $\operatorname{CCSD}(\mathrm{T})$ level with CBS extrapolation for panel (b). In all calculations the basis set superposition error (BSSE) is corrected at all geometries. The global minimum in the interaction energy is found to be $-32.85 \mathrm{~cm}^{-1}$ at $\mathrm{R}=6.35$ bohr and $\theta=180^{\circ}$ for panel (a) and to be $-31.96 \mathrm{~cm}^{-1}$ at $\mathrm{R}=6.33$ bohr and $\theta=180^{\circ}$ for panel (b) corresponding both of them to collinear He -CIH.
-Compared to standard $\operatorname{CCSD}(\mathrm{T})$ calculations with CBS extrapolation we would be required to achieve comparable accuracy with CCSD(T)-F12/aug-cc-pVTZ calculation with a very reduced computing time.

Method/Basis	$\mathrm{r}_{\text {Hel (bohr) }}$	$\bigcirc=0^{\circ}$ (HCl-He)		○=90 ${ }^{\circ}$		$\bigcirc=180^{\circ}$	(He-HCl)
		R(bohr)	V (mm^{-1})	R(bohr)	V (cm-1)	R(bohr)	V (mm^{-1})
CCSD(T).Fi2/aug-c.epVTZ	2.42	7,25	-31,25	7,15	-17,51	6,35	-32,85
CCSD(T) ${ }^{\text {ceBs }}$	2.43	7,24	-31,20	7,15	-16,79	6,33	-31,96
SAPTA+[1]	2,44	7,28	-30,79	7,16	-17,18	6,33	-32,81
ccsob(T)aOz[2]	2,42	7,24	$-30,10$	7,24	-15,12	6,43	-29,40
CCSSOTT/aug.coc.pv5[[3]	2,43	7,24	-31,16	7,14	-17,33	6,33	-32,74
EP2 [4]	-	7,33	-28,40	7,04	-	6,48	-32,80
EPP [5,6]	-	7,40	-14,90	7,08	-	6,68	-15,50

TAB. 2. shows the positions of the minima and of the well depths for three selected He orientations. We compare our results with those published recently. From this table one can see that the position of the minimums of our PES are in good agreement with results obtained by Murdachaew et al. (2004) and Cagidefajin \& Fernandez (2006).
The CCSD(T)-F12 method associated with the aug-cc-pVTZ basis set gives results as accurate as standard Coupled Clusters method with a much larger basis (at least aug-cc-pV5Z). In addition, it leads to a large reduction of the cost of electron structure computations without deterioration of the accuracy. The F12 correction can explain the overestimation of the well depth of the minima in the PES comparing to that computed with $\operatorname{CCSD}(\mathrm{T}) / \mathrm{CBS}$.

2- Long-Range interactions :

In order to understand which potential has correct asymptotic behavior, we have performed SAPT [7] calculations in CBS limit and analytical calculations of the interaction energy on the basis of multipolar expansion.
In FIG. 3. for the CIH-He arrangement, a good agreement is obtained with the potential calculated at the $\operatorname{CCSD}(\mathrm{T}) / \mathrm{CBS}$ and $\operatorname{CCSD}(T) /$ aug-cc-pVTZ with SAPT/CBS. However, in FIG.4. with HCI-He arrangement there is differences between the two potentials and the $\operatorname{CCSD}(\mathrm{T})$-F12 method fails to describe correctly the interaction energy at long-range whereas $\operatorname{CCSD}(\mathrm{T})$ leads to an excellent agreement with SAPT and analytical description of the potential. This is because of the non-consistency of F12 methods.

3- Pressure broadening cross sections :

 TAB. 3. Pressure broadening cross sections for HCl and DCI broadened by He at 300 K| | J-J' | CCSD(T-)F12/aug-ccpVTZ | CCSD(T)/CBS | Neufeldetal. [8] | Willeyetal. [4] | Experimental |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HCl | $0-1$ | 9.618 | 9,624 | 9.8 | - | 13.20 [9] |
| $1-2$ | 8.464 | 8,451 | 9.4 | - | | |
| $2-3$ | 8.099 | 8,095 | 9.5 | - | | |
| DCI | $0-1$ | 7.791 | 71.339 | - | - | - |

Pressure broadening cross sections have been derived from binary scattering S-matrix elements computed by MOLSCAT quantum dynamical code using the Close Coupling (CC) method for all the transitions
In TAB. 3 we present a comparison of rotational $\mathrm{HCl}-\mathrm{He}$ and $\mathrm{DCI}-\mathrm{He}$ pressure broadening cross sections with the experimental values at $\mathrm{T}=300 \mathrm{~K}$ for some transitions. This table shows that our results for $\mathrm{HCl}-\mathrm{He}$ system are in good agreement with Neufeld et al's theoretical data whereas theirs and ours show differences to the experimental ones. Similar conclusions can be drawn when we compared our data for DCI-He system to those of Willey et al. Further investigations are needed.

4- Conclusions :

The use of our highly correlated CCSD(T)-F12 potential energy surface employing the aug-cc-pVTZ basis set reliably reach conventional aug-cc-pV5Z quality. Our calculations convincingly show that the $\operatorname{CCSD}(\mathrm{T})$-F12 method with Triple-Zeta basis set yields results very close to those one may obtain at the basis set limit, with a very little computational cost. Moreover, the CCSD(T)-F12 method reduces the basis set incompleteness error to an amplitude, which leads to almost no effects on the collision rate constants. Therefore, the application of CCSD(T)-F12 method is highly recommended for all future computations of potential energy surfaces for dynamical purposes.

Acknowledgments

We thank a financial support from the PCMI program (INSU, CNRS, FRANCE)

References

[7] R. Bukowski et al., 2008, "SAPT2008: An ab initio program for many
body symmetry-adapted" of Delaware and University of Warsaw (2008)
[8] D. A. Neufeld, S. Green, 1994, Ap. J. 432, 158-166.10 IO M. Graud D. Robert \& L. Galetry, 1979, J. Chem. Phys., 52,312. [10] T. M. Goyette (private communication).

I

