(De-)excitation rate coefficients for collisions of 0, with H,

Yulia Kalugina^{1,2}, François Lique¹

¹LOMC – UMR 6294, CNRS-Université du Havre, 25 rue Philippe Lebon, BP 540, 76058 Le Havre, France ²Department of Optics and Spectroscopy, Tomsk State University, 36 Lenin Avenue, Tomsk 634050, Russia

INTRODUCTION

Oxygen molecule - central molecule in the physical chemistry of many media. It is an important constituent of the earth atmosphere and interstellar gas. O₂ participated in many key reactions in ISM.

Because of the huge barrier height for branching chain oxdation of H_2 with O_2 , at low temperature (T < 1000 K), O_2 – H_2 collisions lead only to ro-vibrational energy transfer. This process is of key importance in astrophysical media since collisions compete with radiative processes in Correct estimation of O₂ abundances in ISM from spectral data requires accurate collisional rate coefficients with the most abundant species such as H, He and H_2 . Determination of these rate coefficients will be an essential support in resolution of so-called "interstellar O₂ problem": recent measurements from the ODIN [1] satellite suggest that the abundance of O_2 in the cores of interstellar clouds is significantly lower than predicted by

The new O₂–H₂ rate coefficients will also be an essential support to the analysis of the recent O_2 observations obtained by the Herschel satellite [3, 4].

The goal of this work is to obtain state-to-state rate coefficients between the first 7 rotational levels $(j_1, j_1' \le 13)$ and the first 27 fine levels $(N, N' \le 17)$ of $O_2(X^3\Sigma^2)$ for temperatures ranging from 5 to 100 K for collisions with H_2 .

For this purpose we have decided to determine a new 4D ab initio PES using the

altering populations in molecular ro-vibrational levels.

latest astrochemical models [2].

"coupled clusters" approach for the ground electronic state of the O_2 – H_2 system.

METHODS

Interaction potential was calculated at the RCCSD(T) level using AVQZ basis set with (3s, 2p, 1d) midbond functions with the BSSE correction (using MOLPRO [5] package).

The potential was expanded in spherical functions:

$$\begin{split} V(R,\theta,\theta',\phi) &= \sum_{l_1,l_2;l} v_{l_1,l_2,l}(R) A_{l_1,l_2,l}(\theta,\theta',\phi) \\ A_{l_1,l_2,l}(\theta,\theta',\phi) &= \sqrt{\frac{2l_1+1}{4\pi}} \{ \langle l_1 0 l_2 0 \mid l_1 l_2 l 0 \rangle P_{l_1 0}(\theta) P_{l_2 0}(\theta') \\ &+ 2 \sum_m (-1)^m \langle l_1 m l_2 - m \mid l_1 l_2 l 0 \rangle \\ P_{l_1 m}(\theta) P_{l_2 m}(\theta') cos(m\phi) \} \end{split}$$

Here *l*, *l* are associated with the rotational motion of O₂ and H₂. The homonuclear symmetry of O₂ and H₂ forces the indexes *l*₁ (0-12) and *l*₂ (0-8) to be even.

 $a_1(l_1, l_2, l)e^{a_2(l_1, l_2, l)R}, for \ R \le R_1$ $v_{l_1,l_2,l}(R) = \begin{cases} \frac{12}{n=2} b_n(l_1,l_2,l)/R^n, \text{ for } R_1 < R \le R_2 \end{cases}$

Pure rotational (de-)excitation

We consider collisions of O_2 with para- and ortho- H_2 : $O_2(j_1) + p -; o - H_2 \to O_2(j'_1) + p -; o - H_2(j'_2),$

where j_1 and j_2 denote the rotational levels of O₂ and H₂, respectively.

The possible rotational excitation of H₂ ($j_2 = 0 \rightarrow j_2 = 2$ or $j_2 = 1 \rightarrow j_2 = 3$ has been taken into account in the calculations.

Time-independent coupled scattering equations were solved using the MOLSCAT code [6] (close coupling). The calculations were performed using the propagator of Manolopoulos [7], the reduced mass of the system being μ = 1.8964 amu.

Total energy grid for collision with para- H_2 : from 17.5 to 1000 cm⁻¹ for collisions with ortho-H2: from 136.0 to 1120 cm⁻¹

This grid allow to obtain rate coefficients after averaging over collisional energy up to 100 K.

Integration range was set from 4.0 a_0 to 50 a_0 .

 O_2 rotational basis was extended to $j_1 = 17$ to ensure convergence of rotational levels of with $j_1 \le 13$. The maximum value of the total angular momentum J was set to be large enough that the inelastic cross-sections were converged to 0.005 $Å^2$.

From the rotationally inelastic cross sections $\sigma_{j1j2\rightarrow j1'j2}$ (E_c), one can obtain the corresponding thermal rate coefficients at temperature T by an average over the collision energy [8]:

Fine structure (de-)excitation

Quantum close coupling calculations were performed for the finestructure resolved inelastic cross sections and rate coefficients of O₂ in collision with para-H₂(j=0) using MOLSCAT code modified by Lique [9].

Total molecular angular momentum *j* is defined by (Hund's case (b)): j = N + S.N and S are nuclear rotational and electronic spin angular momenta. In intermediate coupling scheme rotational wave function for $j \ge 1$ is [10]: $|F_1jm\rangle = \cos \alpha |N=j-1,Sjm\rangle + \sin \alpha |N=j+1,Sjm\rangle$ $|F_2jm\rangle = |N=j,Sjm\rangle$

$$|F_3jm\rangle = -\sin \alpha |N=j-1,Sjm\rangle + \cos \alpha |N=j+1,Sjm\rangle$$

where [N,Sjm> denotes pure Hund's case (b) basis functions and mixing angle α is obtained by diagonalization of molecular Hamiltonian.

The fine structure levels of oxygen are defined by *N*, *F*_i

Calculations were carried out for the first 27 fine levels of O_2 for total energies up to 1500 cm⁻¹.

Inelastic cross sections from $F_{i,j}$ to $F_{i',j'}$ are obtained at each kinetic energy $E_k = E - E_{F_{i,j}}$ [11]:

$$\sigma_{F_i j \to F'_i j'}(E_k) = \frac{\pi}{(2j+1)k_{F_i j Jll'}^2} \sum_{(2J+1)} (2J+1) |T^J(F_i jl; F'_i j' l')(E)|^2$$

By overaging over Maxwellian distribution of collision velocities, we obtain thermal rate coefficients for transitions between fine-structure

[6] J. M. Hutson and S. Green, (1994), molscat computer code, version 14 (1994).

www.cnrs.fr

Electronique, Matériaux".