

Herschel CHESS view of the intermediate-mass protocluster OMC-2 FIR 4

A. López-Sepulcre¹, M. Kama², V. Taquet¹, C. Ceccarelli¹, C. Dominik^{2,3}, E. Caux^{4,5}, A. Fuente⁶

¹ UJF-Grenoble 1 / CNRS-INSU, Institut de Planétologie et d'Astrophysique de Grenoble (IPAG) UMR 5274, Grenoble, F-38041, FRANCE. e-mail: Ana.Sepulcre@obs.ujf-grenoble.fr
 ² Astronomical Institute Anton Pannekoek, University of Amsterdam, Amsterdam, THE NETHERLANDS, ³ Department of Astrophysics/IMAPP, Radboud University Nijmegen, Nijmegen, THE NETHERLANDS
 ⁴ Universite de Toulouse, UPS-OMP, IRAP, Toulouse, France, ⁵ CNRS, IRAP, Toulouse, France, ⁶ Observatorio Astronómico Nacional, Alcala de Henares, Madrid, SPAIN

Context and observations

Broadband spectral surveys of star-forming regions offer a rich view of their physical, chemical and dynamical structure and evolution. As part of the *Herschel* guaranteed time key programme CHESS (Ceccarelli et al. 2010), we obtained a line-rich spectrum of the intermediate-mass protocluster OMC-2 FIR 4 with the **HIFI spectrograph** on-board the *Herschel* satellite, covering most of the frequencies between 480 and 1900 GHz. We have also performed a complementary spectral survey at millimetre wavelengths with the **IRAM 30-m telescope** and mapped the region with the **Plateau de Bure Interferometer**.

Herschel - HIFI spectral survey

The source: OMC-2 FIR 4

An intermediate-mass protocluster in Orion

Full baseline-subtracted HIFI spectrum of OMC-2 FIR 4

Species	#	E _u range	Visr	FWHM	$\int T_{mb} dv$	Flux	Line components
-		K	km/s	km/s	K ∙ km/s	$W \cdot m^{-2}$	-
CO ^{s1}	11	83 752	11.8	12.3	2106.0	3.9(-14)	Quiescent gas, wings, other.
13CO ³²	8	79 719	11.9	4.7	131.0	1.6(-15)	Quiescent gas, wings.
C ¹⁸ O ^{s3}	5	79237	11.3	2.8	13.8	1.5(-16)	Quiescent gas.
C ¹⁷ O ⁵⁴	3	81 151	10.8	3.2	4.0	1.4(-17)	Quiescent gas.
H ₂ O ³⁵	10	53 305	12.1	14.3	367.2	7.5(-15)	Quiescent gas, wings, broad blue, other.
H ₂ ¹⁸ O ^{s6}	1	61	13.7	19.2	1.1	1.0(-17)	Wings.
OH ³⁷	6	270	12.7	19.1	9.0	2.7(-16)	Wings.
OH+38	8	44 50	_	-	-5.4	-5.9(-17)	Foreground slab.
H ₂ O ^{+s9}	1	54	8.4	2.5			Foreground slab.
CH ₃ OH ^{s10}	431	33 659	12.2	4.7	520.5	6.2(-15)	Quiescent gas, other.
H_2CO^{s11}	74	97732	11.9	4.7	96.9	9.56(-16)	Quiescent gas, other.
HCO ^{+s12}	8	90389	11.5	5.4	106.7	1.3(-15)	Quiescent gas, other.
H ¹³ CO ^{+s12}	2	87 117	11.4	2.2	0.7	6.2(-18)	Quiescent gas.
N ₂ H ^{+s13}	7	94 349	11.7	3.0	26.3	3.1(-16)	Quiescent gas, other.
CI ^{s14}	2	2463	11.9	1.8	9.9	1.0(-16)	Quiescent gas, other.
CII ^{s15}	1	91	9.1	2.1	20.8	6.2(-16)	Foreground slab.
CH+s16	1	40	9.8	6.0	-2.8	3.7(-17)	Foreground slab.
CH ³¹⁷	3	26	_	_	0.4	3.8(-18)	Quiescent gas?
CCH ^{s18}	17	88 327	_	-	11.3	1.2(-16)	Quiescent gas, broad blue.
HCN 819	9	89 447	12.3	12.1	110.1	1.3(-15) ^a	Quiescent gas, broad blue, wings.
H13CN520	2	87 116	12.7	10.0	1.7	1.4(-17)	Quiescent gas, broad blue.
HNC 821	2	91 122	11.6	2.6	2.1	1.9(-17)	Quiescent gas.
CN ³²²	20	82 196	12.5	8.1	15.1	1.5(-16)	Quiescent gas, broad blue.
NH ^{s23}	5	47	_	_	_4	_a	Foreground slab, Other, broad blue?
NH3 ³²⁵	7	28286	13.2	5.1	29.8	3.8(-16)	Quiescent gas, broad blue, other.
¹⁵ NH ₃ ^{s26}	1	28	11.3	5.8	0.2	1.3(-18)	Quiescent gas.
CS ³²⁷	12	129543	12.2	10.3	23.7	2.0(-16)	Quiescent gas, broad blue.
C ³⁴ S ^{s27}	1	127	10.0	1.7	0.2	1.6(-18)	Quiescent gas?
H ₂ S ³²⁸	6	55 103	11.6	5.0	13.9	1.8(-16)	Quiescent gas, broad blue?
SO ³²⁹	12	166 321	9.4	9.3	5.7	5.0(-17)	Wings, foreground slab?
SO2 30	2	65 379	11.1	10.0	0.3	2.3(-18)	Broad blue.
SH+331	2	25	_	-	0.4		Other.
HCl ^{s32}	10	30 90	11.4	-	2.9 ^b	$2.7(-17)^{b}$	Quiescent gas, other.
H37Cls32	10	30 90	11.4	-	0.9 ^b	9.0(-18) ^b	Quiescent gas, other.
H ₂ Cl ^{+s33}	5	2358	9.4	1.3			Foreground slab.
H ₂ ³⁷ Cl ^{+s33}	1	58	9.4	1.3			Foreground slab.
HDO ¹⁶	3	43 95	12.9	3.3	1.1	8.4(-18)	Quiescent gas, other?
DCN \$34	2	97 125	12.0	4.9	0.4	3.1(-18)	Other, broad blue?
ND ³³⁵	1	25	-	-	0.3	2.3(-18)	Other, broad blue?
NH2D ⁵³⁶	2	24	11.3	2.6	0.6	4.9(-18)	Quiescent gas, other?
HF ^{s32}	1	59	10.0	2.8	-0.8	-3.8(-17)	Quiescent gas, Foreground slab.
All ^c	718	23752	12.0	5.4	3522.1	6.2(-14)	

 $\frac{d}{dr} = 420 \text{ pc}$ $V_{LSR} = 11.4 \text{ km/s}$ $L \sim 500 \text{ L}_{sun}$

http://www.spitzer.caltech.edu

PdBI maps: The small scale structure of OMC-2 FIR 4

• High-angular resolution continuum and molecular line maps point towards **core multiplicity** in OMC-2 FIR 4.

• We distinguish 3 regions (marked with crosses), which are traced differently by each line, indicating **chemical differentiation** within OMC-2 FIR 4.

• Radio continuum emission detected with the VLA is compatible with an **HII region** driven by a **B4 young star**.

Variety of line profiles:
several kinematical
components

Line inventory:

- 718 lines identified
- 26 species (and 14 secondary isotopologues)
- 58% lines from CH_3OH ; 10% from H_2CO
- $E_{up} = 24 752 \text{ K}$

Kama et al. (submitted to A&A)

Velocity-integrated maps (contours) overlaid on the continuum image (grey).

Left: VLA continuum map at 3.6 cm (Reipurth et al. 1999). *Right*: OMC-2 FIR 4 as seen by our PdBI maps. The red ellipse represents the VLA cm emission.

Complexity in OMC-2 FIR 4: multiple cores, chemical differentiation,

and ionised gas coexist within 10000 AU

López-Sepulcre et al. (submitted to A&A)

References

Ceccarelli et al. 2010, A&A 521, L22 López-Sepulcre et al. (submitted to A&A) Kama et al. (submitted to A&A) Reipurth et al. 1999, ApJ, 118, 983

2 mm spectra: data reduced
1 and 3 mm spectra: to be reduced

Several hundred lines from tens of species, including Complex Organic Molecules (WORK IN PROGRESS)

López-Sepulcre et al. (in prep.)

Acknowledgements

A.L.S. and C.C. : CNES (Centre National d'Èdutes Spatiales) and from the Agence Nationale pour la Recherche (ANR), France (project FORCOMS, contracts ANR-08-BLAN-022)
M.K. : NWO grant, NOVA, Leids Kerkhoven-Bosscha Fonds and the COST Action

on Astrochemistry