Thermal reactivity of HCN and NH₂ in interstellar ices.

J. A. Noble,^{1,2+} P. Theulé,¹ G. Danger,¹ F. Borget,¹ M. Chomat,¹ F. Duvernay,¹ F. Mispelaer¹ & T. Chiavassa¹

[1] Aix-Marseille Université, PIIM UMR-CNRS 7345, 13397, Marseille, France[2] Royal Commission for the Exhibition of 1851 Research Fellow

+Contact: jennifer.noble@univ-amu.fr Based upon Noble et al. 2012 MNRAS, doi:10.1093/mnras/sts272

Creation of the state of the st

Introduction

- HCN is the simplest molecule containing the CN moiety, vital in the formation of amino acids and their precursors.^[1] HCN has been observed extensively towards comets,^[2] and is the major source of the abundant CN[•] radical.^[3]
- NH_3 is the most abundant basic molecular species in interstellar ices, at abundances of 2 15 % H_2O .^[4]
- These species react to form a salt via: HCN + NH₃ \rightarrow NH₄⁺CN⁻
- Salt species are typically refractory, thus are present on the surface of dust grains at higher temperatures (> 150 K) to take place in a water-free chemistry.
- NH₄⁺ is considered a likely candidate^[5] to account for the unidentified 6.85 µm band observed towards YSOs^[6,7] and quiescent regions.^[8]
 The desorption characteristics of the product, the activation energy and rate of the reaction, and the infrared band

Experimental

- Experiments were carried out on the Reactivity on INterstellar Grains (RING, Fig 1.) set-up in the PIIM laboratory at Aix-Marseille Univ.
- HCN and NH₃ were prepared in

separate mixing lines and codeposited onto the gold surface, held at 10 K.

Fig 1. The RING experimental set-up at Aix-Marseille Université.

Infrared spectra and desorption characteristics

• A 1:5 HCN:NH₃ mixture was heated at 2 Kmin⁻¹ from 10 - 180 K.

The evolution of the ice was followed using FTIR spectroscopy (Fig 2) and the desorption by mass spectrometry (Fig 5).

strength of the CN⁻ ion were determined experimentally.

Reaction Rate

Reaction rate

• A series of $\sim 1:15$ HCN:NH₃ mixtures were investigated using the

isotherm technique. Each mixture was heated quickly to a set temperature (between 60 - 105 K) and held at that temperature for a period of several hours (Fig 3 & 4). Ices were monitored using FTIR spectroscopy.

Salt Product

• $NH_4^+CN^-$ has distinctive bands at 1435 cm⁻¹

(NH bend) and 2092 cm^{-1} (CN stretch).

• The band strength of the CN^{-1} ion stretching mode absorption at 2092 cm⁻¹ was determined to be: $1.8 \pm 1.5 \times 10^{-17}$ cm molec⁻¹ in the range 20 - 140 K. • Calculated to be: $k(T) = 0.016 \text{ s}^{-1} \exp(\frac{2.7 \pm 0.4 \text{ kJ mol}^{-1}}{\text{RT}})$

Desorption characteristics

• The desorption of $NH_4^+CN^-$ has an activation energy of 38.0 ± 1.4 kJ mol⁻¹ with a pre-exponential factor of 10²⁸ molec cm⁻² s⁻¹.

Fig 5. Temperature-programmed desorption spectra of m/z 27 (black) and 17 (grey) for the desorption of $NH_4^+CN^-$. The best-fitting zeroth order desorption kinetics are overplotted on m/z 27.

Astrophysical Implications

- Given the low predicted abundance of solid HCN (10^{-7/-8} in gas phase,^[9] thus 10⁻⁴ in solid phase), coupled with the low band strengths of HCN and CN⁻, neither species can be observed with current IR telescopes.
- HCN chemistry gives rise to complex products, via $NH_{A}^{+}CN^{-}$, as illustrated in Fig 6.

 $NH_4^+CN^-$. The final products are a) hydroxyacetonitrile^[10] (HOCH₂CN), b) aminoacetonitrile^[1] (NH₂CH₂CN), c) poly(methylene-imine)^[1] (R-(CH₂-NH)_n-H, where R= HCOO or CN), d) hexamethylenetetramine^[11] (C₆H₁₂N₄).

References & Acknowledgements [1] Danger, G., Borget, F., Chomat, M., et al. 2011, A&A, 535, A47 [2] Bockelee-Morvan, D., Crovisier, J., Despois, D., et al. 1987, A&A, 180, 253 [3] Paganini, L., Villanueva, G. L., Lara, L. M., et al. 2010, ApJ, 715, 1258 [4] Bottinelli, S., Boogert, A. C. A., Bouwman, J., et al. 2010, ApJ, 718, 1100 [5] Schutte, W. A., & Khanna, R. K. 2003, A&A, 398, 1049 [6] Keane, J. V., Tielens, A. G. G. M., Boogert, A. C. A., Schutte, W. A., & Whittet, D. C. B. 2001, A&A, 376, 254 [7] Boogert, A. C. A., Pontoppidan, K. M., Knez, C., et al. 2008, ApJ, 678, 985 [8] Boogert, A. C. A., Huard, T. L., Cook, A. M., et al. 2011, ApJ, 729, 92 [9] Vasyunina, T., Linz, H., Henning, T., et al. 2011, A&A, 527, A88 [10] Danger, G., Duvernay, F., Theule, P., Borget, F., & Chiavassa, T. 2012, ApJ, 756, 11 [11] Vinogradoff, V., Duvernay, F., Danger, G., Theule, P., & Chiavassa, T. 2011, A&A, 530, A128. This work has been funded by the French national program Physique Chimie du Milieu Interstellaire (PCMI) and the Centre National d'Etudes Spatiales (CNES).