New perspectives on the interstellar medium : *Herschel* and *Planck* highlights

Edith Falgarone ENS & Observatoire de Paris, France

« Colloque National PCMI», Paris, 19 – 21 November 2012

Herschel

 3.5 m mirror, passively cooled, 2400 liters liquid Helium

 HIFI 500 GHz to 2THz
 Heterodyne spectroscopy (R~10⁷)

- SPIRE
 200 to 650 μm
 Imager + FTS (R ~ 300)
- PACS
 60 to 200 μm
 Bolometer camera

Galactic Center SPIRE

Planck surveyor

- LFI 30 to 100 GHz, HFI 100 GHz to 857 GHz
- HFI : 54 bolometers, 6 bands, Resolution = 0.3 Cooled down to 0.1 K Polarization capabilities
- 600 times more sensitive than COBE
- HFI mission last twice longer than foreseen
- All-sky survey made 5 times

Outline and opened questions

- Hydride absorption spectroscopy : unexpected molecular richness of gas with low H₂ fraction. Origin?
- [CII] emission and absorption: what does [CII] trace? Missing heating mechanism? Excitation?
- **Power-law spectra of cold dust :** comparison with CO, probes of the dynamic origin of density structure?
- **CO at high galactic latitude:** dynamic origin?
- High polarization degree of dust emission in diffuse ISM : B topology ? Alignment process? (see Jean-Philippe Bernard's talk)

I - Herschel/HIFI absorption spectroscopy

Background sources: dust continuum emission of massive star forming regions

Lines of sight: sample kpc's of galactic ISM

Cloud mass in diffuse component

Distribution of column density: K-extinction, 2MASS, Kainulainen et al 09

- $A_v < 3 5$ mag : log-normal distribution \Rightarrow **Turbulence**
- A_v > 3 5 mag : power-law tail \Rightarrow Self-gravity

HF (J=1-0) 1.23GHz

HF unique = larger binding energy than H₂

H₂ + F = exothermic reaction with activation energy barrier ~ 500 K

Saturated absorption Large optical depths

HF (1-0) thicker than para-water

HF : a new tracer of H_2

Godard et al. 2012

H₂ fraction

Godard et al., in prep.

 $0.04 < f_{H2} < 1$ N_H range : 0.1 to 5 mag = turbulent dominated phase N_{H2} range : 10¹⁹ cm⁻² to 2 x 10²¹ cm⁻² = CO over-rich

Arp220, SPIRE FTS Rangwala et al. 2011

OH^+ , H_2O^+ and H_3O^+ absorption

 $n(OH^+)/n(H_2O^+) = (k_2/k_1) + (k_3/k_1)[n(e^-)/n(H_2)]$

N(OH⁺)/N(H₂O⁺) > 4 ⇔ OH⁺ mostly in atomic gas with a small fraction of H₂ (< 10%) ⇔ H cosmic ray ionization rate $\zeta_{\rm H} = 0.6 - 2.4 \times 10^{-16} \, {\rm s}^{-1}$ Gerin et al. 2010, Neufeld et al. 2010

 \checkmark H₃⁺ in W51 : loss of H⁺ with PAH⁻?

Indriolo et al. 2012

H₃O⁺ : metastable rotational transitions

Hot H₃O⁺ ↔ Formation pumping in X-ray irradiated gas in the CMZ

Lis et al 2012 Benz et al 2010

H₃O⁺ : metastable rotational transitions G10.6-0.34

High CH⁺ abundances

• High endothermicity $C^+ + H_2 \rightarrow CH^+ + H$ $\Delta E/k = 4640 K$

 Fast destruction by collisions with H₂

Visible lines : Crane et al. 1995, Gredel 1997, Weselak et al. 2008

Herschel/HIFI absorption lines

Saturated CH⁺(1-0) lines

Falgarone et al. 2010, Godard et al. 2012

Godard et al. 2010

15

CH⁺ and SH⁺ : failures of PDR models

1

N(SH⁺)N(CH⁺) 0.1 0.01 GC los other los 0.001 1e-08 1e-07 N(CH⁺)/N_H 1e-10 CH⁺ 1e-11 relative abundance n(X)/n_H 1e-12 1e-13 SH[†] 1e-14 n_u= 50 cm n_H=300 cm 1e-15 1e-03 1e-02 1e-01 1e+00 Av

both abundances and abundance ratios cannot be reproduced

Warm chemistry as an alternative

- PDR models : C⁺
- $C^+ + OH \text{ and } H_2O \rightarrow CO$
- Alternative: CH₃⁺
 - $C^+ + H_2 \rightarrow CH^+$ highly endothermic
- $CH^+ + H_2 \rightarrow CH_2^+ \rightarrow CH_3^+$
- Warm non-equilibrium chemistry
- **Energy source:**
- Intermittent turbulent dissipation Godard et al. 2009

Models of Turbulent dissipation regions: CH⁺

 $N(CH^{+})/N_{H} \sim 2 \times 10^{-8} \epsilon_{24} (n_{H}/50 \text{ cm}^{-3})^{-2.3} (A_{v}/0.2)^{-1}$

⇒ N(CH⁺) increases with UV-field ∞ turbulent dissipation rate $\epsilon_{24} = 10^{-24} \text{ erg cm}^{-3} \text{ s}^{-1}$

CH⁺ and SH⁺

Turbulent Dissipation Regions model :

Heating via ion-neutral drift favored over viscous heating

Godard et al. in prep.

SH, SH⁺ and H_2S

SH from SOFIA, Neufeld et al 2012

All H abstraction reactions are endothermic

SH/H₂S = 0.13 >> PDR predictions

Enhanced neutral-neutral rate for H₂S formation [CII] line absorption and CI lines

[CII] absorption
⇒ same velocity coverage
as CH⁺ absorption

CII (158 μ m black) CI (dark blue ${}^{3}P_{1}$ - ${}^{3}P_{0}$, turquoise ${}^{3}P_{2}$ - ${}^{3}P_{1}$)

Comparison of line profiles

CII absorption

- Same velocity coverage as CH⁺ absorption
- confirms that CH⁺ is formed in CNM

II - Galactic plane [CII] line survey

Detection of
 warm H₂
 CO-dark gas
 T_k> 30 K

Langer et al. 2010

Detection of WIM

Velusamy et al. 2012

30°50'00'' 30°45'00'' 10⁻³

[CII] 158 µm in M33

Mookerjea et al. 2011

III - Planck CO detections at high latitude

The 100 GHz channel of Planck includes the ¹²CO(J=1-0) line (and ¹³CO, C¹⁸O). Provides an all-sky map with sensitivity comparable to that of the Dame & NANTEN surveys Planck also sees ¹²CO(J=2-1) and ¹²CO(J=3-2). CO at high latitude raises the problem of CO formation in gas poorly shielded from the UV-field.

CO richness of diffuse gas

MHD simulations Hennebelle et al. 2008

Chemistry post-treatment Levrier et al. 2012 CO data (crosses) : Sheffer + 08, Pan+05, Crenny+04, Lacour+05, Rachford+02,09, Snow+ 08

TDR models : CO and CH⁺

IV - Small-scale filamentary dust emission

Miville-Deschênes et al. 2010

Dust, HI and CO power spectra

Polaris Flare, SPIRE 250 μm (green) IRAS 100 μm (red) dust emission CO Hily-Blant et al. in prep HI Miville-Deschênes et al. 03

The future

- Coupling of dynamics and chemistry, nonequilibrium chemistry
- Formation pumping, state-to-state chemistry
- Additional heating sources
- Cosmic rays:propagation, role in chemistry
- Charged PAHs
- Magnetic fields: a new world is just opening