A complete model of CH⁺ rotational excitation including radiative and chemical pumping processes

B. Godard & J. Cernicharo

Centro de Astrobiología, INTA-CSIC, Madrid

Herschel/PACS - SgrB2(M)

find minimal nb of components

- density
- kinetic temperature
- velocity field
- abundance

	Orion Bar		NGC 7027	
	$n_{ m H}$	$T_{\rm K}$	$n_{ m H}$	$T_{\rm K}$
OI $({}^{3}P_{1} - {}^{3}P_{2})$, CI $({}^{3}P_{1} - {}^{3}P_{0})$, C ⁺ $({}^{2}P_{3/2} - {}^{2}P_{1/2})$, H ₂ S(1)	5×10^4		2×10^5	
CO(J < 9)	10^{5}	85	2×10^5	≤ 100
¹³ CO $(J \ge 9)$, CO $(J \ge 11)$	10^{7}	120	2×10^6	200
$\begin{array}{c} {\rm OH} \ (^{2}\Pi_{1/2},^{2}\Pi_{3/2}) \\ {\rm CH}^{+} \ (J \leqslant 6) \end{array}$	10 ⁷	200	2×10^6	1000
$\rm{CO}^+ \ (2_{5/2} - 1_{3/2})$	$\geq 10^6$		$\geqslant 10^6$	

interclump medium + large density gradients/clumps

MADEX

MADEX - LVG model

- \bullet spherical/plan-parallel cloud
- external radiation field
 - ▶ default : local ISRF
 - scaling : T, β, τ, χ

energy structure of CH⁺

chemical pumping

formation

destruction

• $\mathrm{C}^+ + \mathrm{H}_2(\upsilon', J') \to \mathrm{CH}^+(\upsilon, J) + \mathrm{H}$

• others :
$$\propto (2J+1)\exp(-E_J/T_{\rm K})$$

- $\operatorname{CH}^+(J) + \operatorname{H}$
 - \bullet others : J-independent

Zanchet et al. (in prep.)

exploration of parameters

6/14

parameter domain

$$[H_2] = 0.5$$

 $[e^-] = 10^{-4}$

$$n_{\rm H} = 10^2 \rightarrow 10^6 \text{ cm}^{-3}$$
$$T_{\rm K} = 10 \rightarrow 5000 \text{ K}$$
$$\chi_{\rm fir} = 10^3 \rightarrow 10^8$$
$$\chi_{\rm nir} = 10^5 \rightarrow 10^{10}$$
$$\chi_{\rm opt} = 10^2 \rightarrow 10^7$$

exploration of parameters

7/14

main excitation pathways

$$T_{\rm K} = 100$$
 $T_{\rm K} = 1000$ $\chi_{\rm fir} = 10^6$ $\chi_{\rm nir} = 10^{10}$ $\chi_{\rm opt} = 10^6$

requirements to activate the radiative pumping

near-infrared pumping

optical pumping

requirements to activate the radiative pumping

near-infrared pumping

optical pumping

no interstellar clouds with these conditions

the Orion Bar PDR

physical conditions

chemical profiles

- $n_{\rm H} = 5 \times 10^4 \ {\rm cm}^{-3}$
- $\chi_{\rm nir} = 3 \times 10^4$
- $\chi_{\rm opt} = 3 \times 10^4$

• chemical pumping dominant : $J \geqslant 3-2$

• chemical pumping dominant : $J \ge 3-2$

- chemical pumping dominant : $J \ge 3-2$
- Zanchet's rates : > 30% on $J \ge 5-4$

- chemical pumping dominant : $J \geqslant 3-2$
- Zanchet's rates : > 30% on $J \ge 5-4$
- radiative pumping inefficient

- chemical pumping dominant : $J \ge 3-2$
- Zanchet's rates : > 30% on $J \ge 5-4$
- radiative pumping inefficient

NGC 7027

physical conditions

chemical profiles

- $\chi_{\rm opt} = 4 \times 10^4$
- carbon rich $[C] = 1.3 \times 10^{-3}$

• chemical pumping dominant : $J \ge 5-4$

• collision with e^- : $J \leq 4-3$

• chemical pumping dominant : $J \ge 5-4$

• collision with e^- : $J \leq 4-3$

• chemical pumping dominant : $J \ge 5-4$

• collision with $e^-: J \leqslant 4-3$

- chemical pumping dominant : $J \ge 5-4$
- collision with $e^-: J \leqslant 4-3$
- radiative pumping inefficient

- chemical pumping dominant : $J \ge 5-4$
- collision with $e^-: J \leqslant 4-3$
- radiative pumping inefficient
- density 10 times smaller than previous models

Conclusions

Summary

- species sensitive to chemical pumping
 - ▶ short lived molecules : e.g. CH^+ , CO^+ (?), ...
 - state-specific rate constants are important
 - ▶ CH⁺ rotational lines explained in low density medium
- species sensitive to near-infrared pumping
 - HF, HCl for $\chi_{\rm nir} \ge 10^4 \times (n_{\rm H}/10^4)^{2/J}$
- $\bullet\,$ species sensitive to optical/uv pumping and photodissociation
 - SiO, HCl, CS, and CO for $\chi_{\rm opt/uv} \ge 10^3$

Open issues - Future contributions

- extension to ...
 - ▶ polyatomic molecules : metastable lines of NH₃
 - other ground-state configurations : OH ($^{2}\Pi$) and CO⁺ ($^{2}\Sigma^{+}$)