

PHYSIQUE et CHIMIE du MILIEU INTERSTELLAIRE Colloque général 19-21 novembre 2012 Paris Colloque PCMI 21 Novembre 2012

Effects of cosmic rays on hydrocarbon interstellar dust

Marie Godard, Géraldine Féraud, Marin Chabot, Yvain Carpentier, Thomas Pino, Rosario Brunetto, Jean Duprat, Cécile Engrand, Philippe Bréchignac, Louis d'Hendecourt, Emmanuel Dartois.

Hydrogenated amorphous carbons (a-C:H or HAC) : → Important component of carbonaceous interstellar dust → Observed in diffuse interstellar medium

Spectral signatures of interstellar a-C:H

Signature of aliphatic C-H vibrations of interstellar carbonaceous dust

Evolution of the 3.4 µm band carriers in the interstellar medium

Diffuse interstellar medium

Dense interstellar medium

Evolution of dust due to:

Observation of the 3.4 µm band

UV irradiation Hydrogen atoms exposure Cosmic rays irradiation

3.4 µm band not observed

Aims :

Evaluate the processing of interstellar aCH and their spectral signatures by exposure to cosmic rays

Irradiated samples

Irradiated samples

Laboratory vs observed IR spectra

Irradiations by energetic ions

A large range of \neq ions and energies were used:

TANDEM (IPN Orsay) in March 2009 & February 2010

(~ 10-100 MeV)

H⁺ 10 MeV He²⁺ 20 MeV C⁶⁺ 91 MeV C⁵⁺ 50 MeV Si⁷⁺ 85 MeV Ni⁹⁺ 100 MeV I¹²⁺ 160 MeV

in Catania (Laboratory for Experimental Astrophysics) in October 2007 & February 2009 (~ 100 keV) H⁺ 200 keV He⁺ 200 keV Ar²⁺ 400 keV

IR spectroscopy measured during the experiment to follow the evolution induced by irradiations.

IR spectroscopy measured during the experiment to follow the evolution induced by irradiations.

IR spectroscopy measured during the experiment to follow the evolution induced by irradiations.

Recombination model

\Rightarrow Hydrogen is lost in molecular form

Model developed by Adel et al. (1989) and Marée et al. (1996)

- Electronic energy deposition ~ Breaking of C-H bonds along the ion track
- If 2 free H atoms are close \Rightarrow **Recombination in H**₂ within the material bulk
- The H₂ molecule diffuses out of the bulk without interaction.
- The hydrogen loss stops when the H concentration ρ reaches the threshold when H atoms are too far from each other to recombine in H₂ (V=1/ ρ_f)

Recombination model

→ Hydrogen is lost in molecular form

Model developed by Adel et al. (1989) and Marée et al. (1996)

- Electronic energy deposition ~ Breaking of C-H bonds along the ion track
- If 2 free H atoms are close \Rightarrow **Recombination in H**₂ within the material bulk
- The H₂ molecule diffuses out of the bulk without interaction.
- The hydrogen loss stops when the H concentration ρ reaches the threshold when H atoms are too far from each other to recombine in H₂ (V=1/ $\rho_{\rm f}$)

For each irradiation experiment: σ_d : the destruction cross section ρ_f/ρ_i : the asymptotic value of the

integrated optical depth at infinite fluence

Evolution of interstellar aliphatic C-H exposed to cosmic rays

Experiments with a large \longrightarrow Effect of each cosmic Ray (Z,E) range of Z & E Cosmic ray flux: $\Phi(Z,E)$ \longrightarrow Z \int_E Dehydrogenation by a CR(Z,E)

Evolution of interstellar aliphatic C-H exposed to cosmic rays

Evolution of the 3.4 µm band in interstellar medium

	Diffuse ISM	Interface	Dense ISM
	Bare grains	UV	Ice coated grains
		10^{-4} 0.01 1 Å	
3.4 μ m band	observed		Not observed
Destruction time by cosmic ray	10 ⁸ years	10 ⁸ years	10 ⁸ years
Destruction time by UV photons	4 10 ³ years	$\gtrsim 4.10^3 \exp(A_V)$ years	$\gtrsim 10^7$ years
Formation time by H atoms	2 10 ³ years		inefficient
Destruction/ Formation	Efficient formation	Efficient destruction ?	Slow destruction

Results of a-C:H exposure to cosmic rays: H₂ formation

 $R_{H2,CR} \sim 10^{-11} \text{ molecules cm}^{-3} \text{ yr}^{-1}$

→ Much lower than the "classical" H₂ formation rate on dust grains $(\sim 10^{-5} \text{ molecules cm}^{-3} \text{ yr}^{-1})$

This process can produce H₂ from the whole bulk of interstellar a–C:H in all interstellar environments

 $R_{H2,UV} \sim 10^{-7}$ -10⁻⁶ molecules cm⁻³ yr⁻¹ (Jones 2012)

a–C:H grains can contribute to accelerate the $H \rightarrow H_2$ conversion and have a role of catalyst for the formation of H_2

a-C:H before irradiation

a-C:H before irradiation

Irradiated a-C:H (equivalent to ~10⁸ years of CR exposure)

sp¹ C ~ 0% of C 2-3% of C

sp² C 45-55% of C 80-90% of C

a-C:H before irradiation

Irradiated a-C:H (equivalent to ~10⁸ years of CR exposure)

Aromatisation

Aromatic C 35-40% of C 70-90% of C 75-85% of sp² C 90-95% of sp² C

Aromatic H 2-4% of H 10-13% of H

a-C:H before irradiation

Irradiated a-C:H (equivalent to $\sim 10^8$ years of CR exposure)

Aromatic H

Dehydrogenation

H/C	1.2-1.3	0.3-0.5
%H	55%	25-30%
CH ₂ /CH ₃	1.9	2.3

Conclusion

\Rightarrow Characteristic destruction time of aliphatic C-H by cosmic rays: ~ 10⁸ years

> Interstellar a-C:H can be efficiently dehydrogenated in the interfaces between diffuse and dense regions

> > \Rightarrow R_{H2,CR} ~ 10⁻¹¹ molecules cm⁻³ yr⁻¹

 \Rightarrow Cosmic ray irradiation induces **aromatisation** and **emergence of C \equiv C** in a-C:H

← Heavy ions play an important role in these destruction/modification (Fe contributes between 5% and 40% of total dehydrogenation)