

Early phases of Solar System formation: 3D physical & chemical modeling of the collapse of a prestellar dense core.

Ugo Hincelin

AMOR team (Astrochemistry of Molecules & ORigins of planetary systems) LAB (Laboratory of Astrophysics of Bordeaux)

Thesis supervisors (Oct 2009 - Oct 2012):

Valentine Wakelam (LAB, Bordeaux) Stéphane Guilloteau (LAB, Bordeaux)

Collaborators:Franck Hersant & Anne Dutrey (LAB, Bordeaux)Benoit Commerçon & François Levrier (LERMA/ENS, Paris)Equipe COMEX (ISM, Bordeaux)Yuri Aikawa & Kenji Furuya (Kobe University, Japan)

Funding: Région Aquitaine, LAB

1 - Introduction	2 - Modeling	3 - Results	4 - Conclusion
Low mass star formation (<8M _{sol})		Main phases	
	<image/>	« Young » protoplanetar	y disk (10 ⁴ yr)

Scientific objectives

Chemical evolution of gas & ice (from cloud to « young » disk)

<u>lssue</u>

- Link between : Chemical composition of Interstellar medium
 & Matter of the disk
- Influence of initial conditions
- Influence of physical history (T, n) of the medium
- Survival of interstellar molecules to the formation of disks

Study using numerical simulation :

- Compute chemical composition/evolution
- Prepare observation

3D physical & chemical model : RAMSES + NAUTILUS

Nautilus = Gas grain chemical model, developed in Bordeaux (V. Wakelam & F. Hersant)

Hincelin, Commerçon, Wakelam, Hersant & Guilloteau, in preparation

Hincelin, Commerçon, Wakelam, Hersant & Guilloteau, in preparation

Extraction of the different components

Criteria based on velocity & energy (Joos et al. 2012)

Outflow

- 1. for z > 0: $v_z > v_{threshold}$
- 2. for $z < 0 : v_z < v_{threshold}$

Disk

- 1. $v_{\phi} > f_{\text{threshold}} v_{r}$
- 2. $v_{\phi} > f_{\text{threshold}} v_z$
- 3. rotational support > $f_{threshold}$ thermal support
- 4. $n > 10^9 \text{cm}^{-3}$

Pseudodisk

3. of disk, but not 1. or 2., and 4. relaxed to 10^7 cm⁻³

Central core

thermal support > f_{threshold} rotational support

Envelope what remains (with n < 10⁷cm⁻³)

differences = 2 to 5 order of magnitude

>Why? outflow of $\mu 200$ warmer (some K) & less dense (/40) than outflow of $\mu 1000$ ¹⁹

1 - Introduction	2 - Modeling	3 - Results	4 - Conclusion
Chemical composition of the disk		Survival of interstellar molecules	

(Hincelin, Wakelam, Commerçon, Hersant & Guilloteau, submitted to ApJ)

• Abundance Gas + Ice (global view)

3 models:

- Differences between chemical composition:
- 1) Initial molecular cloud

2) Disk

Similar abundances for disk & cloud except for:

 HNC destruction
 (desorption followed by destruction in the gas phase when T > 50K)

> CO_2 formation (High T promotes OH + CO \rightarrow CO₂ + H on the grain surface (*Ruffle & Herbst 2001*))

Early phases of Solar System formation:

3D physical & chemical modeling of the collapse of a prestellar dense core

(Hincelin, Wakelam, Commerçon et al., submitted to ApJ) (Hincelin, Commerçon, Wakelam et al., in preparation)

Globally, few chemical modifications of the matter during the collapse

→ initial chemical conditions are important

Chemical distinction between components (disk, outflow...) and between cores (high B versus intermediate B) theoretically possible

□ Synthetic observations of 1st Larson core

on-going work (B. Commerçon, F. Levrier, LERMA ENS Paris A. Dutrey, S. Guilloteau, LAB Bordeaux)

 → 3D model + radiative transfer
 → synthetic observations of molecules (ALMA cycle 2)

Early phases of Solar System formation:

3D physical & chemical modeling of the collapse of a prestellar dense core

(Hincelin, Wakelam, Commerçon et al., submitted to ApJ) (Hincelin, Commerçon, Wakelam et al., in preparation)

Globally, few chemical modifications of the matter during the collapse

→ initial chemical conditions are important

Chemical distinction between components (disk, outflow...) and between cores (high B versus intermediate B) theoretically possible

□ Synthetic observations of 1st Larson core

on-going work

(B. Commerçon, F. Levrier, LERMA ENS Paris

A. Dutrey, S. Guilloteau, LAB Bordeaux)

 → 3D model + radiative transfer
 → synthetic observations of molecules (ALMA cycle 2)

> Thank you for your attention ③ Ugo HINCELIN, LAB, Bordeaux

