New processes in the PDR code

Franck Le Petit, E. Roueff, J. Le Bourlot, C. Pinto, E. Bron LUTH - Observatoire de Paris, CNRS, Université Paris Diderot

The Meudon PDR code

PDR code :

- computes atomic and molecular structure of interstellar clouds
- interpret observations & understand physical and chemical processes
- 1D & stationnary

• Cooling - non local radiative transfer

The Meudon PDR code

New developments :

• Grains

- modified Hollenbach et al. prescription
 - MRN grains size distribution
 - Simple prescriptions for $T_{gr}(r, A_v)$
- PDR + DustEM
 - computes I.R. emission by dust
 - Ex : non-local pumping of H_2O by warm grains

Spherical geometry

PDR (LUTH) + DUSTEM (IAS)

Surface chemistry : H₂ formation

Observations:

- ISO Spitzer : Models understimate H₂ line intensities in PDRs (Habart et al.)
- H₂ formation rate on grains in models is too low
- Impacts the transition atoms / molecules
- Impacts interpretations of all species

Laboratory experiments :

- H₂ forms in a narrow window of T_{dust}
- •~11-20 K

2 10-16 H₂ 1,5 10-16 $\alpha_{\rm H2} \, \, ({\rm cm}^3 \, {\rm s}^{-1})$ 1 10⁻¹⁶ 5 10-17 0 10 12 14 16 20 6 8 18 22 T_{dust} (K)

Edge of clouds : Physisorption :

- $T_{dust} > 20 \text{ K} => \text{Thermal desorption}$
- not in agreement with observations

Surface chemistry : H₂ formation (Le Bourlot et al. 2012)

Langmuir-Hinshelwood (LH) Grain Grain Grain Η Diffusion $A = \frac{\nu}{S} \cdot exp\left(\frac{-E_0}{kT_d}\right)$ Grain Desorption $W = \nu \cdot exp\left(\frac{-E_1}{kT_d}\right)$ Grain The formation rate by LH mechanism depends on grains temperature

Impact on H₂ line intensities

 H_2 , 0-0 S(2) PDR : $n_{\rm H} = 10^4 \text{ cm}^{-3}$, G = 10^3 ISRF $I(ER-LH) / I(R = 3x10^{-17})$ 10⁻⁷ 1.0×10^{4} 10⁶ Η **ER-LH** 9.0×10^{3} 1.5 10⁵ 10⁻⁸ 8.0×10^{3} 2 3 10-17 10⁴ 7.0×10^{3} 3 10⁻⁹ EH(H²) [cm⁻⁹ s⁻¹] [cm⁻³ s⁻¹] 10⁻¹⁰ 10⁻¹⁰ 10⁻¹¹ n(X) [cm⁻³] 6.0×10^{3} 10³ × 5.0×10^{3} 10² 4.0×10^{3} 10¹ 3.0×10^{3} H_2 10⁰ 2.0×10^{3} 10⁻¹² 10⁵ 10⁴_H [cm⁻³] 10^{3} 1.0×10^{3} ----ا 0.0 × 10⁰ 10 10⁻¹³ 0.01 0.1 10⁰ 0.001 1 10¹ A_V [mag]

Eley-Rideal mechanism :

- shifts H₂ formation towards the edge of PDRs Efficient formation on warm grains
- H₂ line intensities can be increased up to a factor 3

H₂ formation by Eley-Rideal : Heating mechanism

Theoretical results of Eley-Rideal (Sizun et al. 2010)

7 % Extraction
60 % H₂ intenal energy
13 % H₂ kinetic energy
20 % Grain internal energy

In star forming regions (Ex : Orion)

- High density
 - collisinal de-excitations are efficient
 - ► Einternal -> Ekinétic (gaz)
- High UV radiation field
 - ▶ Fast cycle : formation destruction
 - ▶ Fast conversion of the UV energy in kinetic energy of the gas

Eley-Rideal mechanism can be an efficient heating process in dense and strongly illuminated regions

Surface chemistry : H₂ formation

PDR code : everything is coupled ! => Impact of H₂ formation by E.R. on CO excitation

• Comparison of CO line intensities between models with ER and R = $3 \ 10^{-17}$

Some CO lines intensities can be increased up to a factor ~ 3 (dependent on gas density and intensity of radiation field)

Surface chemistry : H₂ formation

Application to NGC 7023 & Orion Bar

• Herchel observations of CO up to J ~ 19

(Joblin et al. in prep)

Model parameters :

- Specific radiation field
- isobaric model (P ~ 10^7 cm⁻³ K)

Limits to have better agreement :

- geometry
- grain size distribution / composition profile

• **Poster 32 :** Impact of PAH evolution on the energetic of photon-dominated regions (C. Joblin)

Implementation of surface chemistry in the PDR code

Rate equation formalism

Two kind of species

- Mantle / Ice : C, CH, CH₂, CH₃, CH₄,
 O, OH, H₂O,
 CO, HCO, H₂CO, H₃CO, O₂, CO₂, CH₃OH
 F, HF, CI, HCI...
- Surface species : H

Reactions

- Adsorption / Bouncing
- diffusion reactions
- Desorption due to :
 - UV photons (primary & secondary)
 - cosmic rays

Important chemical parameters

- adsorption efficiencies
- surface reaction rates
- photo & cosmic rays desorption rates

Only a few of these chemical parameters are known

	Barrier [K]	
	Diffusion	Desorption
н	100	350
0	240	800
OH	378	1260
H ₂	135	450
O ₂	363	1210
H ₂ O	558	1860
CO	363	1210
HCO	453	1510
H ₂ CO	528	1760
CH ₃ O	651	2170
CH ₃ OH	618	2060
CO ₂	750	2500

Stantcheva et al. (2002)

Impact of surface chemistry on a typical PDR $n_H = 10^4 \text{ cm}^{-3}$, $G = 10^3 \text{ Mathis}$

Pure gas phase chemistry

Impact of surface chemistry on a typical PDR $n_H = 10^4 \text{ cm}^{-3}$, $G = 10^3 \text{ Mathis}$

Surface chemistry

Application to H₂CO towards the Horsehead

(V. Guzman et al. - A&A, 2012)

Chemistry of H₂CO :

H₂CO formation on grains

Application to H₂CO towards the Horsehead

(V. Guzman et al. - A&A, 2012)

IRAM obs. of H₂CO at 2 positions

- PDR
- dense core

Model :

- Specific density profile
- G ~ 100 ISRF

Formation of H₂CO

- In dense core
 - Formation in gas

In the PDR

- Formation on grains
- Photo-desorption

• **Talk :** Physics and chemistry of UV illuminated neutral gas: The Horsehead case (P. Gratier)

• **Poster 30 :** The Horsehead WHISPER line survey (V. Guzman et al.)

Impact of desorption by UV photons (and cosmic rays)

rate = $\mathbf{k} \times \mathbf{f}_{UV}$

Conclusions

Implementation of detailed physics :

- ER, LH mechanisms for H₂ formation
- complex surface chemistry

• Better agreement observations - models

- H₂ line intensities
- CO excitation properly reproduced up to J ~ 20 in PDRs by models
- Proper order of magnitudes for species linked to surface chemistry : H₂CO, O₂, hydrids, ...

It thanks to many years of laboratory experiments & theoretical studies of grains physics PDR models begin to give proper results !

Still some ad-hoc parameters Laboratory experiments & theoretical studies more and more mandatory

- adsorption barriers on non-perfect surfaces
- surface reaction rates
- photo-desorption rates
- cosmic rays effects on grains

Future of the PDR code

Present public version : PDR 1.4.4

- H₂ formation by ER and LH
- DustEM 4.0 coupling
- non local I.R. pumping effects
- Several updated at. mol. data

Download at : <u>http://pdr.obspm.fr</u>

Next version : beginning 2013

- Complex surface chemistry
- UV pumping for more molecules as CO

What's next

- Stochastic effects on grains (T, n(H))
- Turbulence and diffusion
- Better implementation of X-rays and cosmic rays
 - Environments : Extragalactic medium, young stars, Galactic center, ...

Poster 8 : Formation de H2 : Influence des fluctuations de la température des grains (E. Bron)