Low velocity shocks as signatures of turbulent dissipation in diffuse irradiated gas

P. Lesaffre, G. Pineau des Forêts
B. Godard, P. Guillard
E. Falgarone, F. Boulanger
G. Momferratos, F. Levrier
A. Gusdorf, M. Gerin

Outline

- Two paths for molecules formation
- Turbulence dissipation
- Molecules production and excitation in shocks
- The example of the Stephan's Quintet
- Future prospects and ongoing work

ISM molecular gas chemistry for the dummies like me

- Form H₂ molecules on grains. Then:
- $* H_2^{+} H_2^{+} \rightarrow H_3^{+} + X \rightarrow XH^{+} + H_2^{-}$

 $* H_2 + X \rightarrow XH + H$

where X is in {C, O, S, Si}.
 (N is an exception..)

ISM molecular gas chemistry for the dummies like me

Form H₂ molecules on grains. Then:
 ★ H₂ + (H₂⁺) → H₃⁺ + X → XH⁺ + H₂
 Needs ionisation (Cosmic rays, Irradiation) ★ H₂ + X → XH + H

where X is in {C, O, S, Si}.
 (N is an exception..)

ISM molecular gas chemistry for the dummies like me

- Form H₂ molecules on grains. Then:
- $* H_2 + (H_2^+) \rightarrow H_3^+ + X \rightarrow XH^+ + H_2$
- **Needs ionisation** (Cosmic rays, Irradiation) $* H_2 + X (\rightarrow) XH + H$

Needs thermal energy (Turbulence dissipation, mixing) where X is in {C, O, S, Si}. (N is an exception..)

The Kolmogorov cascade

Nature of the dissipation

G. Momferratos

$$\varepsilon_t = \varepsilon_v + \varepsilon_o + \varepsilon_a$$

Dissipative heatings: * Green: viscous * Red: ohmic * Blue: ion-neutral drift

2D Slice of a 512³ pseudo-spectral 3D incomressible MHD + A.D. Decaying turbulence from an Orzag-Tang vortex. Snapshot at peak dissipation.

Dissipation in vortices

B. Godard, E. Falgarone, G. Pineau des Forêts (2009)

Dissipation in shocks

The Paris-Durham code (?) (soon online thanks to A. Gusdorf)

- Follow a fluid parcel through a steady shock structure :
- J-shock : trigger viscous jump
- C-shock : charge and neutral velocities free to differ
- Cooling / Heating
- Chemical network : 140 species, 1000 reactions
- 150 H₂ levels followed
- => Temperature and chemical structure, line emissivities...

Models of Irradiated shocks

- Include basic PDR physics:
 - * Integrate Av extinction throughout the shock
 - * Include relevant photo-reactions
 - * H₂ and CO self-shielding functions

- Check PDR models are recovered for slowly moving fluid parcel.

Comparison with PDR models

nH=50/cm3 u=10⁻⁴ km/s G0=1

Comparison with PDR models

nH=50/cm3 u=10⁻⁴ km/s G0=1

G₀=1 Av=0.1 N(H₂)=10²⁰/cm² Full grid of models: http://cemag.ens.fr

Reaction	Temperature barrier	Velocity
$\mathrm{O}\mathrm{+H_2} \rightarrow \mathrm{OH}\mathrm{+H}$	$2980 \mathrm{K}$	$7.5 \ {\rm km.s^{-1}}$
$\rm C^+\!\!+H_2 \rightarrow \! CH^+\!\!+H$	$4640 \mathrm{~K}$	$9.4 \mathrm{~km.s^{-1}}$
$\rm S+~H_2 \rightarrow SH+~H$	$9620 \mathrm{~K}$	$13.5 \ {\rm km.s^{-1}}$
$S^+\!+H_2 \rightarrow \!SH^+\!+H$	$9860 \mathrm{K}$	$13.6 {\rm ~km.s^{-1}}$
$\rm C+~H_2\rightarrow \rm CH+~H$	$14100 \mathrm{~K}$	$16.3 {\rm ~km.s^{-1}}$
$\rm{Si}^+\!\!+H_2\rightarrow\!\rm{Si}H^+\!\!+H$	$14310~{\rm K}$	$16.4 {\rm ~km.s^{-1}}$
$\rm N+~H_2 \rightarrow \rm NH+~H$	$14600~{\rm K}$	$16.6 {\rm ~km.s^{-1}}$
H_2 dissociation energy	$52000~{ m K}$	$31.3 \ {\rm km.s^{-1}}$

The second second

Excitation in shocks H₂ lines

Excitation in shocks atomic lines

Main coolants in shocks, b=0.1

Main coolants in shocks, b=1

Ex : Stephan's Quintett

Cluver, Appleton et al. (2010) Guillard et al. (2009) $L(H_{2}) \sim 10^{42} \text{ erg/s}$ $L(H_{2}) \sim 3 L(X)$ $L(H_{2}) \sim 0.3 L(IR)$ (CII)

Shock driven turbulence

Guillard et al. (2010)

Shocks distribution in driven turbulence

Smith, Mac Low & Heitsch (2000) : power-law PDF

Adjust PDF of shocks to observed H₂ emission

Chi square table:

b	n_{H}	1-Gauss	pow-law	exp.	pw-exp.	2-Gauss
0.1	10^{2}	371.8	2307.0	54.3	60.8	11.2
0.1	10^{3}	504.0	1650.4	152.4	61.1	105.6
0.1	10^{4}	416.1	2139.9	174.3	580.8	155.3
1	10^{2}	1628.5	184.2	598.5	<u>2.6</u>	<u>2.0</u>
1	10^{3}	139.3	175.1	35.9	5.0	13.8
1	10^{4}	130.3	1648.0	12.6	6.3	15.8

Generic PDF shapes:

PDF	formula	Ν
Power-Law	u^{-p_1}	1
Exponential	$\exp(-p_1 u)$	1
Piece-wise exponential	at $u = 3, 10, 20, 40$ $f(u) = 1, p_1, p_2, p_3$	3
1-Gaussian	$e^{-(u-p_1)^2}$	1
2-Gaussian	$e^{-(u-p_1)^2} + p_3 e^{-(u-p_2)^2}$	3

Adjust PDF of shocks to observed H₂ emission

The two best fits:

Adjust PDF of shocks to observed H₂ emission

Conclusions

- A new grid of irradiated shock models: http://cemag.ens.fr
- Molecules are enhanced in low velocity shocks
- Molecular observations probe shock statistics
- We find a bi-modal distribution in both the SQ and the Chamaeleon line of sight
- A significant fraction of the material on these line of sight is shocked
- CO column-densities and CII emission can be significantly affected by low velocity shocks
- Read more in Lesaffre et al. (2012)

Ongoing work: CHEMSES = DUMSES + chemistry

CO 4.9916e-7

⊧1e-7

-1e-8

6.008e-9

10¹⁶ cm

32 species, 7 H₂ levels 1024² pixels, decaying 2D turbulence, U_{ms}~2 km/s

Molecules enhanced by dissipation of 2D turbulence

G₀=1 Av=0.1

The cunning plan..

Intermittent statistics of the dissipation

G. Momferratos

Dissipation strength

=> Molecules formati

Molecular yields from Shocks (for example)

Main coolants b=0.1

Main coolants b=1

Code validation: steady-state shock at 3 km/s

Code validation: steady-state shock at 3 km/s

Code validation: steady-state shock at 3 km/s

Dissipation in shocks

J- and C-type shocks

Full grid of models: http://cemag.ens.fr

Maximum temperature in shocks

Excitation in shocks H₂ lines

Excitation in shocks atomic emission

