Low velocity shocks as signatures of turbulent dissipation in diffuse irradiated gas

P. Lesaffre, G. Pineau des Forêts
B. Godard, P. Guillard
E. Falgarone, F. Boulanger
G. Momferratos, F. Levrier
A. Gusdorf, M. Gerin
Outline

- Two paths for molecules formation
- Turbulence dissipation
- Molecules production and excitation in shocks
- The example of the Stephan's Quintet
- Future prospects and ongoing work
Form H_2 molecules on grains. Then:

- \[H_2 + H_2^+ \rightarrow H_3^+ + X \rightarrow XH^+ + H_2 \]

- \[H_2 + X \rightarrow XH + H \]

where X is in \{C, O, S, Si\}.

(N is an exception..)
ISM molecular gas chemistry for the dummies like me

- Form H_2 molecules on grains. Then:

 $\text{H}_2 + (\text{H}_2^+) \rightarrow \text{H}_3^+ + X \rightarrow X\text{H}^+ + \text{H}_2$

 Needs ionisation (Cosmic rays, Irradiation)

 $\text{H}_2 + X \rightarrow X\text{H} + \text{H}$

 where X is in \{C, O, S, Si\}.

 (N is an exception..)
ISM molecular gas chemistry for the dummies like me

- Form H_2 molecules on grains. Then:

$$\text{H}_2 + (\text{H}_2^+) \rightarrow \text{H}_3^+ + X \rightarrow \text{XH}^+ + \text{H}_2$$

Needs ionisation (Cosmic rays, Irradiation)

$$\text{H}_2 + X \rightarrow \text{XH} + \text{H}$$

Needs thermal energy (Turbulence dissipation, mixing)

where X is in \{C, O, S, Si\}.

(N is an exception..)
The Kolmogorov cascade

Injection \Rightarrow Kinetic energy \Rightarrow Viscous Dissipation

Compress \Rightarrow Strain \Rightarrow
Nature of the dissipation

\[\varepsilon_t = \varepsilon_v + \varepsilon_o + \varepsilon_a \]

Dissipative heatings:
- Green: viscous
- Red: ohmic
- Blue: ion-neutral drift

2D Slice of a 512^3 pseudo-spectral
3D incompressible MHD + A.D.
Decaying turbulence from an Orzag-Tang vortex.
Snapshot at peak dissipation.

G. Momferratos
Dissipation in vortices

B. Godard, E. Falgarone, G. Pineau des Forêts (2009)
Dissipation in shocks

Viscous length

Cooling length

\(b=1, n_H=10^2 \) profiles

Temperature (K)

Distance (cm)

J-shocks

\(u=22 \text{ km/s} \)
The Paris-Durham code (?) (soon online thanks to A. Gusdorf)

- Follow a fluid parcel through a steady shock structure:
 J-shock: trigger viscous jump
 C-shock: charge and neutral velocities free to differ
- Cooling / Heating
- Chemical network: 140 species, 1000 reactions
- 150 H₂ levels followed

=> Temperature and chemical structure, line emissivities...
Models of *Irradiated* shocks

- Include basic PDR physics:
 * Integrate Av extinction throughout the shock
 * Include relevant photo-reactions
 * H₂ and CO self-shielding functions

- Check PDR models are recovered for slowly moving fluid parcel.
Comparison with PDR models

- Meudon PDR code
- Shock code
- nH=50/cm³
- u=10⁻⁴ km/s
- G0=1
Comparison with PDR models

- Meudon PDR code
- Shock code

$n_H = 50/cm^3$
$u = 10^{-4} \text{ km/s}$
$G_0 = 1$
$G_0 = 1$
$A_v = 0.1$
$N(H_2) = 10^{20}/cm^2$

Full grid of models:
http://cemag.ens.fr
Molecule production in shocks

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Temperature barrier</th>
<th>Velocity</th>
</tr>
</thead>
<tbody>
<tr>
<td>O + H₂ → OH + H</td>
<td>2980 K</td>
<td>7.5 km.s⁻¹</td>
</tr>
</tbody>
</table>

Adiabatic relation:

\[T_{\text{max}} = \frac{2(\gamma - 1)}{(\gamma + 1)^2} \frac{\mu}{k_B} u^2 \]
Molecule production in shocks

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Temperature barrier</th>
<th>Velocity</th>
</tr>
</thead>
<tbody>
<tr>
<td>O + H₂ → OH⁺ + H</td>
<td>2980 K</td>
<td>7.5 \text{km.s}^{-1}</td>
</tr>
<tr>
<td>C⁺⁺ + H₂ → CH⁺⁺ + H</td>
<td>4640 K</td>
<td>9.4 \text{km.s}^{-1}</td>
</tr>
<tr>
<td>S⁺ + H₂ → SH⁺ + H</td>
<td>9620 K</td>
<td>13.5 \text{km.s}^{-1}</td>
</tr>
<tr>
<td>S⁺⁺ + H₂ → SH⁺⁺ + H</td>
<td>9860 K</td>
<td>13.6 \text{km.s}^{-1}</td>
</tr>
<tr>
<td>C⁺ + H₂ → CH⁺ + H</td>
<td>14100 K</td>
<td>16.3 \text{km.s}^{-1}</td>
</tr>
<tr>
<td>Si⁺⁺ + H₂ → SiH⁺⁺ + H</td>
<td>14310 K</td>
<td>16.4 \text{km.s}^{-1}</td>
</tr>
<tr>
<td>N⁺ + H₂ → NH⁺ + H</td>
<td>14600 K</td>
<td>16.6 \text{km.s}^{-1}</td>
</tr>
<tr>
<td>H₂ dissociation energy</td>
<td>52000 K</td>
<td>31.3 \text{km.s}^{-1}</td>
</tr>
</tbody>
</table>
Molecule production in shocks

![Graph showing molecule production in shocks](image)
Excitation in shocks
H_2 lines

$b=0.1, n_H=10^2$: H_2 line emission

Line emission (erg/cm2/s/sr)

Shock velocity (km/s)

T (K)

508
844
1682
2332
3474
4415
Excitation in shocks
atomic lines

\[b=0.1, n_H=10^2: \text{atomic emission} \]
Main coolants in shocks, \(b=0.1 \)
Main coolants in shocks, $b=1$
Ex: Stephan's Quintett

Cluver, Appleton et al. (2010)
Guillard et al. (2009)

$L(H_2) \sim 10^{42} \text{ erg/s}$
$L(H_2) \sim 3 \, L(X)$
$L(H_2) \sim 0.3 \, L(\text{IR})$
$L(H_2) \sim 2 \, L(\text{CII})$
$UV: \ G_0 \sim 1$
Shock driven turbulence

Guillard et al. (2010)

Large-Scale Shock Wave

$V_h \approx 600 \text{ km/s}$

$V_c < V_h$

Hi

$n_H > 0.1 \text{ cm}^{-3}$

H$_2$

Cloud compression and H$_2$ formation

Hot Plasma

$T \approx 5 \times 10^6 \text{ K}$

$n_H \approx 2 \times 10^{-2} \text{ cm}^{-3}$

Fragmentation

10^6

10^7

time [yr]
Shocks distribution in driven turbulence

Smith, Mac Low & Heitsch (2000) : power-law PDF
Adjust PDF of shocks to observed H_2 emission

Chi square table:

<table>
<thead>
<tr>
<th>b</th>
<th>n_H</th>
<th>1-Gauss</th>
<th>pow-law</th>
<th>exp.</th>
<th>pw-exp.</th>
<th>2-Gauss</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>10^2</td>
<td>371.8</td>
<td>2307.0</td>
<td>54.3</td>
<td>60.8</td>
<td>11.2</td>
</tr>
<tr>
<td>0.1</td>
<td>10^3</td>
<td>504.0</td>
<td>1650.4</td>
<td>152.4</td>
<td>61.1</td>
<td>105.6</td>
</tr>
<tr>
<td>0.1</td>
<td>10^4</td>
<td>416.1</td>
<td>2139.9</td>
<td>174.3</td>
<td>580.8</td>
<td>155.3</td>
</tr>
<tr>
<td>1</td>
<td>10^2</td>
<td>1628.5</td>
<td>184.2</td>
<td>598.5</td>
<td>2.6</td>
<td>2.0</td>
</tr>
<tr>
<td>1</td>
<td>10^3</td>
<td>139.3</td>
<td>175.1</td>
<td>35.9</td>
<td>5.0</td>
<td>13.8</td>
</tr>
<tr>
<td>1</td>
<td>10^4</td>
<td>130.3</td>
<td>1648.0</td>
<td>12.6</td>
<td>6.3</td>
<td>15.8</td>
</tr>
</tbody>
</table>

Generic PDF shapes:

<table>
<thead>
<tr>
<th>PDF</th>
<th>formula</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power-Law</td>
<td>u^{-p_1}</td>
<td>1</td>
</tr>
<tr>
<td>Exponential</td>
<td>$\exp(-p_1 u)$</td>
<td>1</td>
</tr>
<tr>
<td>Piece-wise exponential</td>
<td>at $u = 3, 10, 20, 40$</td>
<td>3</td>
</tr>
<tr>
<td>1-Gaussian</td>
<td>$e^{-(u-p_1)^2}$</td>
<td>1</td>
</tr>
<tr>
<td>2-Gaussian</td>
<td>$e^{-(u-p_1)^2} + p_3 e^{-(u-p_2)^2}$</td>
<td>3</td>
</tr>
</tbody>
</table>
Adjust PDF of shocks to observed H$_2$ emission

The two best fits:

H$_2$ rotational lines: $b=1$, $n_H = 10^2$
Adjust PDF of shocks to observed H_2 emission

PDFs for $b=1$, $n_H = 10^2$
Conclusions

- Molecules are enhanced in low velocity shocks
- Molecular observations probe shock statistics
- We find a bi-modal distribution in both the SQ and the Chamaeleon line of sight
- A significant fraction of the material on these line of sight is shocked
- CO column-densities and CII emission can be significantly affected by low velocity shocks
- Read more in Lesaffre et al. (2012)
Ongoing work:

CHEMSES = DUMSES + chemistry

- 10 species, 7 \(H_2 \) levels
- \(10^{16} \) cm
- 32 species, 7 \(H_2 \) levels
- \(1024^2 \) pixels, decaying 2D turbulence, \(U_{\text{rms}} \sim 2 \text{ km/s} \)
Molecules enhanced by dissipation of 2D turbulence

$G_0 = 1$
$A_v = 0.1$
The cunning plan..

Intermittent statistics of the dissipation

Molecular yields from Shocks (for example)

Dissipation strength

G. Momferratos

=> Molecules formation
Main coolants $b=0.1$
Main coolants $b=1$

$\textbf{b}=1, n_H=10^2$: main coolings

- H2
- C+
- C
- O
- CO
- H2O
- OH
- H

Normalized cooling vs $u(\text{km/s})$
Code validation: steady-state shock at 3 km/s
Code validation: steady-state shock at 3 km/s
Code validation: steady-state shock at 3 km/s
Dissipation in shocks

Viscous length

Cooling length

J-shocks

$b=1, n_H=10^2$ profiles

Temperature (K)

Distance (cm)

$u=22$ km/s
J- and C-type shocks

$b=1, n_H=10^2$ profiles

$V_{magnetosonic}=21$ km/s

Temperature (K)

10^{-2} 10^{2} 10^{3} 10^{4} 10^{5}

10^{12} 10^{13} 10^{14} 10^{15} 10^{16} 10^{17} 10^{18}

distance (cm)

$u=20$ km/s $u=22$ km/s

C-shocks

J-shocks
Maximum temperature in shocks

\[b=1, n_H=10^2 : \text{max Temperature} \]

![Graph showing maximum temperature in shocks](image-url)
Molecule production in shocks

\[b=1, n_H=10^2 : \text{neutrals} \]
Molecule production in shocks

\[b=1, n_H=10^2 : \text{ions} \]

Column-density (\(1/\text{cm}^2\))

\[\text{u(km/s)} \]

C+
CH+
S+
SH+
H3+
Excitation in shocks

H_2 lines
Excitation in shocks
atomic emission