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Interstellar grains and

chemical complexity
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Deuteration in prestellar cores

Deuterium fractionation: Abundance ratio between an hydrogenated

species and its deuterated isotopologue including D atom(s)
Ex: water =» HDO/H,0O or D,0/H,0

High deuteration is observed for various species in prestellar cores:

Molecular clouds Prestellar cores

Cosmic D/H reservoir: 10~
(Linsky 2003)
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see Ceccarelli et al. (2007); Bacmann et al. (2007)
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Very high molecular deuteration is observed in Class O protostars:
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: 1= Why do the grain surface
10} A molecules show different
' 1 fractionations ?

Gas phase processes are not efficient
1 enough to alter the deuteration after
3 the ice evaporation seen in Class O

Simple deuteration f protostars

Double deuteration § (Charnley+ 1997, André+ 2000, Osamura+
Triple deuteration 1 2004)
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protostars reflects the formation in
From Taquet et al. (2012, in press) see A. agens's poster for water deuteration
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The GRAINOBLE model

Time-dependent gas-grain astrochemical model based on the rate
equations (Hasegawa et al. 1992)
- gas phase processes

- gas-grain processes =» accretion and (thermal+non-thermal) desorption
- bimolecular and exothermic surface reactions

=» Following surface experiments
which show that cold ices are mostly A°°’e“'°“.\
inert (see Watanabe et al. 2003, 2004), Deserption
Multilayer approach that:

- distinguishes the processes between
surface/ bulk

- traps particles in the bulk

- saves the composition of each layer
=» accurate for ice photolysis

Diffusion

L-H reaction

Taquet, Ceccarelli, Kahane 2012a, A&A, 538, A42|
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The chemical network

Gas phase chemical network:
- complex network coming from the KIDA database for 7 elements
- deuterium chemistry (following Roberts et al. 2000, 2003, 2004)

- ortho and para spin states of H, and key ions (following Hugo et al. 2009)
(see A. Faure and L. Gavilan's posters on H, o/p)

Surface chemical network based on recent experimental works:
- deuterated water network from i) O (Dulieu+ 2010, Oba+ 2012),
ii) O, (Miyauchi+ 2008, see H. Chaabouni's poster), iii) O5 (Mokrane+ 2009)

- deuterated formaldehyde and methanol network
(Watanabe+ 2002, Nagaoka+ 2005, Hidaka+ 2009, Fuchs+ 2009, see A. Pernet's poster)

- carbon dioxide network (Oba+ 2010, loppolo+ 2011, Raut+ 2011)
- wavelength-dependent UV photolysis on ices based on
experimental works (Fayolle+ 2011) or MID simulations (Andersson+ 2008)




1 - Introduction 2 - Model 3 - Predictions 4 - Observations | 5 - Conclusions

- Hydrogenation of CO
(Watanabe+ 2002, 2004, 2006,
Fuchs+ 2009)

- H,CO deuteration via
addition/abstraction

reactions
(Hidaka+ 2009)

- CH;0H deuteration via £ oo,
addition/abstraction %2 |
reactions e | 2
(Nagaoka+ 2005, 2007) 0,00 CD,OH  CHD,0D

Chemical network proposed by Watanabe & Kouchi (2008), Hidaka et al. (2009)
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Some key reactions show activation energy barriers

- In previous models, reaction probability computed assuming a
rectangular energy barrier with a width arbitrary fixed to 1 A
-
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- The Eckart model is introduced
for all the reactions, from quantum
gas phase calculations Reactants
=» fit an approximate PES

=» compute an accurate reaction
probability

ex: H,0, + H=>» H,0 + OH

P =1.210%: Pr,Eckart = 1.4 107 Reaction coordinate

r,square

Taquet, Peters, Kahane, Ceccarelli et al. 2012c, A&A, in press. §
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Multiparameter approach

Several input parameters show a large range of values:

- Physical conditions vary with
time/object

- Grain surface parameters follow
distributions depending on grain/ice

- Uncertain key chemical parameters
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=>» Model grid by varying the input parameter values:

study the influence of each parameter on the ice chemistry
(see also H. Mokrane's poster)
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Chemical differentiation
within ices

Ices are very heterogeneous and their chemical composition
depends on the physical conditions
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Water-rich ice (+ CO,)
=» consistent with Av-

dependent ice observations
(see Whittet et al. 2001, 2007)
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Taquet, Peters, Kahane, Ceccarelli et al. 2012c, A&A, accepted §
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Chemical differentiation
within ices

Ices are very heterogeneous and their chemical composition
depends on the physical conditions
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(+ H,0,, H,CO, CH3OH)
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dependent ice observations
(see Whittet et al. 2007, 2011;
Boogert et al. 2011)

Taquet, Peters, Kahane, Ceccarelli et al. 2012c, A&A, accepted §
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Deuteration reactions in competition with
reactions involving CO
9O 5 H,D0* — HD,", D%, D, ...
H,*
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HCO*
=>» CO depletion increases the deuteration
(see Roberts et al. 2003)

Icy molecules (H,0, H,CO, CH;0H) form
via addition reactions with H, D atoms
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=» Their deuteration depend on:
- the increase of the gaseous atomic [D]/[H]
- when they are formed

Atomic [D]/[H]

10 100
CO depletion factor

Taquet, Ceccarelli, Kahane 2012b, ApJL, 748, L3
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H, ortho/para ratio and

ice deuteration

Ortho spin state of H, has a higher internal energy, allowing
endothermic reactions to occur at low temperatures
=» deuteration in the gas phase decreases with the opr(H,)
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Water deuteration for 4 opr(H,) values and
varying 6 other parameters

The opr(H,) decreases the water
deuteration by several orders of
maghnitude

=» stronger decrease than the
standard deviations induced by all
other parameters

Taquet, Peters, Kahane, Ceccarelli et al. 2012c, A&A, in press. §
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Abstraction reactions and
formaldehyde/methanol deuterations

Abstraction reactions =» needed to reproduce the high observed
H,CO and CH;0OH deuterations

Addition reactions only Addition + abstraction reactions
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Taquet, Ceccarelli, Kahane 2012b, ApJL, 748, L3 §
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Ice formation in IRAS 16293

Water deuteration is reproduced for:
-alow H, o/p (< 3 10%)

- a large range of n, (8 10° < n, <3 10° cm™)
- temperatures between 10 and 20 K
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Formaldehyde and methanol deuteration
are reproduced for:

- higher densities (> 5 10° cm™3)

- lower temperatures (= 10 K)

=>» water forms first in low-density regions
while formaldehyde and methanol are
mainly formed in cold dark cores

solid: 10 K, dashed: 20 K
Density (cin’) Taquet, Peters, Kahane, Ceccarelli et al. 2012¢c, A&A, in press.
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Water deuteration in
low-mass protostars

formation in the precursor cold phase

However, HDO/H,O constrained only in IRAS 16293

=> PdBi observations of the HDO 4,,-4,,;
transition (at 143 GHz) toward 2 low-mass
protostars: NGC1333-IRAS2A and -IRAS4A

=» High angular resolution: estimation of the
emission coming from the warm quiescent
envelope

Taquet, Lépez-Sepulcre, Ceccarelli et al. 2012d, AplL, in prep.
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Water deuteration in
low-mass protostars

Comparison of our observations with PdBi H,'30 observations by Persson §
et al. (2012):

=» Although the H,'80 emission has also an outflow component, most of
the HDO and H,80 emissions originate from the same quiescent envelope

LVG analysis of these emissions combined with single-dish observations
(Liu et al. 2011):

- HDO/H,0 = 0.2-0.5 % in IRAS2A

- HDO/H,O0 = 0.5-1 % in IRAS4A

Taquet, Lopez-Sepulcre, Ceccarelli et al. 2012d, AplL, in prep. §



1 - Introduction 2 - Model 3 - Predictions 4 - Observations | 5 - Conclusions

Conclusions & Perspectives

v’ The multilayer approach shows that ices are heterogeneous
=>» in good agreement with A, -dependent ice observations

v' The high deuteration is explained by recent chemical networks
=>» ex: abstraction reactions are needed to reproduce the observed H,CO

and CH;0OH deuterations

v’ The deuteration is very sensitive to the physical conditions
=» trace the physical and chemical history of observed protostars

* Study of the multilayer formation and deuteration of ices with
evolving physical conditions

* Use the deuteration to probe the formation pathways of
Complex Organic Molecules




